Non-Singular Trees, Unicyclic Graphs and Bicyclic Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Inertia of Unicyclic Graphs and Bicyclic Graphs

Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n+, n−, n0) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n0 denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n− 2ν(G). Gu...

متن کامل

On the Modified Randić Index of Trees, Unicyclic Graphs and Bicyclic Graphs

The modified Randić index of a graph G is a graph invariant closely related to the classical Randić index, defined as

متن کامل

Leap Zagreb indices of trees and unicyclic graphs

By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics

سال: 2020

ISSN: 2152-7385,2152-7393

DOI: 10.4236/am.2020.111001